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Cracking in concrete as a ubiquitous cementitious material in civil structures has been a worldwide
critical issue in the field of engineering. Acoustic emission (AE) has demonstrated promising outcomes
in research and laboratory experiments for monitoring these structures that led to plethora of reports,
articles and recommendations for concrete structures. Many of these studies focus on cracking mode
detection to estimate the significance of damage because in general, shear-like phenomena indicate
severe damage and occur after tensile (flexural) cracking. The distinctive signs of the cracking modes
are embedded in some AE parameters like the RA-value and average frequency (AF). Signals emitted from
shear fracture exhibit higher RA-values with smaller AF than tensile ones. However, there are no univer-
sally fixed boundaries for classification of these features due to the parameters like member geometry,
material properties sensor location and response. In addition, although AE consists of a random set of
data, the role of uncertainty is not fully taken into account in data processing. To overcome these defi-
ciencies, this article proposes a pattern classifier technique titled support vector machines. Small-scale
fracture experiments were carried out to impose controlled cracking modes, record AE data for each
cracking mode, and evaluate the performance of classifiers. The results show that the classification
boundaries for AE features and their associate uncertainties could be successfully estimated. The effect
of sensor distance as an imperative parameter in variation of classification boundaries could be quanti-
fied. Furthermore, the adequacy of other feature sets (i.e., other than RA and AF) for classification was also
examined.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In the past three decades, significant efforts have been made
towards the development of structural health monitoring (SHM)
systems for concrete structures. A technique that demonstrates
promising online monitoring is acoustic emission (AE) [1–6]. The
term AE describes the stress waves caused by sudden strain
releases due to fracture of the material. Many studies have demon-
strated that the modes of cracking (tensile or shear) in concrete
structures emit different AE signatures [1,2,7–9]. While loading
concrete structures until failure, tensile cracks (mode I) generally
develop at moderate loading level (elastic behavior), while shear
cracks (mode II) dominate at large loading levels (plastic behavior)
[10]. Therefore, it could be beneficial to monitor the mode of cracks
as a lead to estimate the structural damage state. Nevertheless, the
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conventional AE analyses are mostly inadequate for real time mon-
itoring and warning systems because they do not allow exploration
of the uncertainties prevalent in the structural characterization
problem.

Uncertainty is an important issue in damage classification for
real world health monitoring systems. Variability in structure
geometry, material properties, sensor characteristics, noise, tem-
perature, humidity, measurement inaccuracy, and insufficient
knowledge about the process of damage nucleation and evolution
[11] are among imperative sources of uncertainty. The above fac-
tors increase the inherent variability of AE measurements which
inevitably results from the random nature of fracture process.
Indeed, each crack propagation event is unique and different from
the previous or the next in terms of fractured area or released
energy. This implies that all external sources of error or variability
should be limited in order not to mask the anyway demanding
classification attempted by the AE features. With the aid of ongoing
computer science progress, statistical techniques and pattern clas-
sification are recently playing a significant role in the field of SHM;
in particular, acoustic emission monitoring. It has been used to
either understand the underlying source of mechanism or to define
criteria for probabilistic decision making [2,12–18].

The issue of cracking mode characterization based on AE sig-
nals, has been treated quite adequately in laboratory by the
‘‘moment tensor analysis’’ (MTA) [19,20]. Despite the successful
classification achieved in usually small scale experiments, applica-
tion of MTA to larger scale is not straightforward mainly because
each cracking event must be recorded by at least six transducers.
This needs expensive instrumentation in an actual case of monitor-
ing since the transducers are dispersed to cover a large volume and
supply information for several different zones of the structure. The
result is sensor separation distances of the order of meters which
do not allow acquisition of AE waves from the same fracture event
by as many as six sensors. Therefore, a new procedure is necessary
to yield crucial and reliable information using less number of
sensors.

A full definition of AE features can be found in literature, e.g.
[21], however the definition of the most common features is also
done herein. Fig. 1 depicts a typical waveform with its main fea-
tures. A threshold is always defined by the user in order to avoid
noise signals while the first time the waveform crosses the thresh-
old (threshold crossing, count) is considered the onset of the wave-
form. One of the most important waveform parameters is
Amplitude which is the voltage of the highest peak and is com-
monly measured in Volts or dB. Duration is the time window
between the onset and the last threshold crossing, while rise time
(RT) is the time between the onset and the maximum peak.
‘‘Energy’’ is another important parameter that measures the area
under the rectified signal envelope (MARSE). A parameter taking
Fig. 1. A typical AE signal with so
into account the initial rising angle of the signal is RA value which
is RT over amplitude (Eq. (1)) and is measured in ls/V. Frequency
indicators can be found in the form of ‘‘average frequency, AF’’
which is defined simply as the number of counts over duration
(Eq. (2)) while ‘‘central frequency’’ and ‘‘peak frequency’’ corre-
spond to the centroid and the frequency with the maximum mag-
nitude of the spectrum after FFT of the waveforms.

RA ¼ ðRise timeÞ=ðPeak amplitudeÞ ð1Þ

AF ¼ ðCountsÞ=Duration ð2Þ

Energy-related features, like energy and amplitude are con-
nected to the intensity of the cracking source. Additionally, wave-
form features like duration, RT, RA and AF have been shown to
correlate well to the fracture mode and are proposed for crack
characterization in concrete [22]. Specifically, it has been consis-
tently observed that tensile mode of cracking results in AE of
higher frequency content and shorter duration [23,24]. The actual
reason is related to the elastic wave modes excited by the different
motion of the tips of the cracks. At the tensile mode, due to the
opposing displacement of the sides vertical to the crack plane, a
volumetric change occurs in the vicinity of the crack tip emitting
most of the energy in the longitudinal wave mode. On the other
hand, under shear cracking, the sides of the crack move in opposite
directions but in parallel to the crack plane, which introduces a
change of shape instead of volume [1].

Due to the large proportion of shear wave energy and the lower
velocity of shear waves, the meaningful content of the waveforms
is delayed compared to the ‘‘tensile’’ waveforms. Simulation stud-
ies concerning through the thickness and surface cracks in concrete
have confirmed these trends [24–26]. Additionally, in several ded-
icated experimental studies, AE parameters like AF and RA have
shown a definite change when the fracture mechanism shifts from
tensile (micro-) cracking to debonding, fiber pull-out or actual
shear [1,2,8,18,22,23,27,28]. AF registers an average decrease of
50% and RA an even stronger increase, which allow identifying
the different stages at laboratory scale [1].

Fig. 2 shows a simple representation of classification using the
two aforementioned parameters, AF and RA. Though this classifica-
tion produces quite successful results in discriminating the differ-
ent modes, it can only be safely applied in laboratory scale and only
if the boundaries have been acquired by experiment at similar
specimens. Applying similar classification in large scale is more
complicated because of the influence of long propagation on the
elastic waveforms. Concrete is heterogeneous and effectively scat-
ters and damps the waves. Therefore, depending on the distance
between the cracking source and the AE receiver, the wave will
undergo changes in vital parameters like its frequency content
and amplitude (downshifted) and RT and duration (increased for
me features x = (Amp, Dur).
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Fig. 2. Conventional crack classification in JCMS-IIIB5706 code [29].

A. Farhidzadeh et al. / Construction and Building Materials 67 (2014) 129–138 131
moderate distances due to scattering). This leads to increase of the
RA value as well. The changes will be stronger as the propagation
distance increases. Therefore, any classification rule developed by
experiments will only apply to the specific experimental condi-
tions and should not be lightheartedly applied for AE signals
recorded by sensors at different separation distances. The same
applies for treating data from different sensors in a single popula-
tion since waveforms collected at different locations will have
different accumulated effect of scattering.

In this study, experimental results of a recent investigation on
fracture of cementitious materials are analyzed. Experiments
targeted the bending and shear mode of fracture showing that fre-
quency decreases by 35–50% in average between tensile and shear
mode and RA increases by several times. However, classification
success is restricted if all data are considered in a single population
as the tensile cracking signals collected at the furthest sensor from
the crack tend to resemble the shear ones due to downshifting of
their frequency and ‘‘stretching’’ in duration.

The objective of this article is twofold. First, the proportionality
problem in conventional classification (i.e., identifying the straight
line in Fig. 2) is addressed. Second, other AE features in which the
characterization of cracking modes is highly likely and have not
been extensively used are introduced. To approach this goal, the
authors propose a pattern recognition technique for crack classifi-
cation using AE signals, i.e., Support Vector Machine (SVM). Study-
ing the effect of sensor distance from cracks, performance of the
classifier, and possibility of using other AE features rather than
conventional ones, are among the main objectives of this research.

The rest of this paper is organized as follows. A synopsis of pat-
tern recognition along with mathematical background of SVM is
presented in the next section. Then the experimental setup is
described. This section is followed by the results of analyses for
each classifier, cross-validation, and effect of sensor distance.
Finally, the concluding remarks are given.

2. Pattern recognition

In machine learning, pattern recognition is: ‘‘the act of taking in
raw data and taking an action based on the ‘‘category’’ of the
pattern’’ [30]. The output is a set of labeled data associated to a
set of classes. Pattern recognition problems are generally catego-
rized based on the type of learning that generates the output, i.e.,
supervised and unsupervised. Supervised learning exploits a set
of training data that consists of a set of labels clarifying to which
class each training data belongs to. This training set is used to train
(learn) a classifier as well as possible. In unsupervised learning, on
the other hand, the training data does not have labels. Therefore, it
attempts to discover the inherent patterns in the training data that
can then be used to determine the hidden class boundaries. In
either case, performance of the classifier is examined by a set of
validation (test) data to assess the generalization on new data sets.
In case of unavailability of test data, cross-validation is applied. It
consists of splitting initial training data set into two parts, the
training part and the validation part. The classifier is trained on
the training part and then to estimate the generalization accuracy,
the classifier is tested on the validation part. It is imperative that
the validation set not have points also in the training set.

With advent of advanced statistical techniques and high perfor-
mance computing, pattern recognition of acoustic emission has
recently attracted researcher’s attention [31–35]. In particular, to
classify crack modes in large-scale reinforced concrete structures,
unsupervised pattern classification techniques have been used
when the source of AE events were unknown [2,17,31,32]. Gauss-
ian Mixture Modeling and likelihood ratio test are among success-
ful methods that could probabilistically discover the underlying
hidden nature of AE sources [2]. In another investigation, k-means
and Sifted b-value (Sb) analysis [17,33,34] were proposed to esti-
mate the micro-to-macro crack transition stages for each principal
crack mode when no information is available for the data labels. In
this study, small-scale experiments with controlled cracking mode
were conducted in order to obtain the ‘‘label’’ (i.e., crack mode) for
each AE datum so as to clearly define the associated boundaries
between the classes of shear or tensile. Support Vector Machine
(SVM) was adopted to classify the labeled AE data as a robust linear
classifier. SVM description and its mathematical background is
briefly discussed as follows.

2.1. Support vector machine

Support vector machine is a linear discriminant classifier that is
widely used in pattern recognition problem due to its decent
generalization performance. SVM has been limitedly investigated
for classification of AE in composite laminates [36], pipeline
monitoring to discriminate leakage signals from other type signals
[37], and elimination of noisy signals [38] but its application in AE
classification for cementitious materials has not been investigated.
The theory of SVM is well documented in textbooks [30,39]. In this
section, the concept of this technique with a short review of the
mathematical formulation is presented.

SVMs preprocess the data to map them to a sufficiently high
dimension, usually higher than the original feature space because
data from two classes can always be separated by a hyperplane if
a suitable mapping (kernel) function u() is applied [30,39]. Here
we assume each pattern xk has been transformed to yk = u(xk).
The linear discriminant g() in an augmented y space is [30]:

gðyÞ ¼ aTy ð3Þ

where a is the weight vector and y is the transformed pattern. Next,
for each pattern xk, k = 1, 2, . . . ,n, we assign zk = ±1 to distinguish.
Whether pattern k is in class x1 or x2 (i.e., z = +1 or z = �1). A dis-
criminant hyperplane insures [30]

zkgðykÞP 0 k ¼ 1; . . . ;n ð4Þ

Support vector machine finds the separating hyperplane with
the largest margin between hyperplane and the data from each
class; see Fig. 3. The larger margin leads to better generalization
of the classifier. The distance from a (transformed) pattern y to
the hyperplane is r = |g(y)|/||a|| [30], and assuming that a positive
margin b exists, Eq. (4) implies:

zkgðykÞ
kak P b k ¼ 1; . . . ;n ð5Þ

The goal is to find the weight vector a that maximizes b. The
solution vector can be scaled arbitrarily while it still preserves
the hyperplane. Therefore, the constraint b ||a|| = 1 is imposed to



Fig. 3. SVM discriminant hyperplane.

132 A. Farhidzadeh et al. / Construction and Building Materials 67 (2014) 129–138
insure unique solution [30]. Given that b should be maximized, this
constrain demand the solution to minimize ||a||2. To solve Eq. (5)
with the aforementioned constrain, the method of Lagrange unde-
termined multipliers is used in the following functional:

Lða;aÞ ¼ 1
2
kak2 �

Xn

k¼1

ak zkaTyk � 1
� �

ð6Þ

The optimized solution seek to minimize L() with respect to a
and maximize it with respect to the Lagrange multipliers ak [30].
The last term in Eq. (6) represents the task of classifying the points
correctly (see Eqs. (4) and (5)). The solution of Eq. (6) incorporates
a reformulation process [40] to eventually find the support vectors.
The support vectors are those transformed training patterns that
represent equality in Eq. (4) (filled markers in Fig. 3). They are
the closest data to the margin. The error rate is finally calculated
via the following equation:

e ¼ 1
m

Xm

k¼1

Hð�1� zkgðykÞÞ; e 6 0:5 otherwise : e ¼ 1� e ð7Þ

where m is the size of testing vector and H(u) is the Heaviside step
function. If the error from Eq. (7) was above 0.5, it means the clus-
tering regions are reverse and we need to flip the sign of zk and
update the error as shown in the right hand side of Eq. (7). The error
rate depends on the extent of overlapping within the clusters. It is
not a parametric function of the feature space, but it can be quanti-
fied using Eq. (7). The advantage of SVM is its ability to present the
classification boundary as a parametric function (not to present
error as a parametric function). To quantify uncertainty (or to find
the margin of error), cross-validation algorithm should be imple-
mented by random selection of training data in a recursive fashion.
Fig. 4. Loading set up for (a)
Similar to every clustering technique, SVM has some limita-
tions. The most important governing parameter of SVM is selection
of a proper kernel function. Based on the feature space with high
dimensionality, we may not be able to choose a kernel function
at the first glance. A prior information about the clusters (here
Japan Construction and Material Standard for crack mode classifi-
cation was used) is highly helpful for choosing an appropriate ker-
nel function. In this study a linear kernel function was used and
resulted in a robust classification. Another restriction of SVM is
training large datasets which can result in slow performance. In
this study, we did not encounter such a problem, as the number
of data points was limited.

In addition, if a higher order (nonlinear) kernel function is used
for SVM, special care should be taken about over-fitting when the
boundary becomes biased. In such conditions, over-fitting can be
resolved by greedy tuning of regularization parameters and using
an appropriate kernel function. Since SVM is independent of the
feature space dimension, we can have ‘‘resistant’’ marginal error
by adjusting the SVM parameters of kernel function. Resistant
means that SVM can handle outliers better or that it is insensitive
to the outliers.
3. Experimental setup

This paper focuses more at the pattern recognition analysis. However, basic
information about the experimental procedure is given here, while the interested
reader can be directed for more details to [23]. The material was mortar with water
to cement ratio 0.55 and sand to cement 3.5 by mass. The maximum sand grain size
was 4.75 mm while the specimens were prisms of dimensions 40 � 40 � 160 mm.

Six specimens were subjected to monotonic loading through three-point bend-
ing according to EN 13892-2: 2002 [41], see Fig. 4. The loading rate was 50 N/s. A
slight modification was done for the other six specimens in order to study of the
shear fracture mode. Specifically, the center load was transferred by a metal tab
in order to be distributed while the supports were also distributed leaving only a
small shearing zone. FEM analysis confirmed that with the specific setup the dom-
inant stresses were shear as opposed to the tensile of bending [24].

For AE monitoring purposes, two broadband AE sensors with maximum sensi-
tivity at 450 kHz (Pico, PAC) were attached to the same side of the specimen at spe-
cific distances from the cracking zone, as seen in Fig. 4a and b. The first sensor, S1,
was placed 15 mm from the cracking zone while the second, S2, at 55 mm from the
expected location of the crack which was secured by small notches, as seen in
Fig. 4b for the shear mode. The waveforms were recorded in a two-channel moni-
toring board PCI-2, of PAC with a sampling rate of 5 MHz. The threshold and pre-
amplifier gain was set to 40 dB. In the present analysis signal belonging to ‘‘AE
events’’ were only considered to increase reliability. This means that for each signal
captured by the nearby sensor (S1), another signal was captured by the second
transducer (S2) within a limited time window (defined at 18 ls) belonging to the
same cracking incident. For each specimen a number of approximately 8–10 AE
events were recorded from the location of the crack resulting in 116 hits for all ten-
sile tests and 86 for the shear.
4. Results and discussion

To evaluate the performance of classifiers, the following AE
features were initially extracted from AE signals: Counts, Energy,
Duration, Amplitude, AF, Central-Frequency (CF), RA and Peak Fre-
quency. In the first part of this section, classification performance
is evaluated for the conventionally recommended features (i.e.,
bending and (b) shear.



Fig. 5. Training SVM for x = (RA, AF) and k = 15% in (a).

S1;
S2;
Mixed;

SVM

AF=0.0055 RA+95.5

AF=0.0041 RA+84.5
AF=0.0051 RA+66.2

Fig. 6. Decision boundaries and margin of uncertainty for crack mode classification
using support vector machine and conventional AE features.
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RA and AF) for crack classification. To discover other possible fea-
ture pairs, all the pair-wise selection of features for all three cases
(data from first sensor S1, data from S2, and mixed data from both
sensors) were studied in the next part of this section.
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Fig. 7. Variation of error rate versus k by cross-validation.
4.1. Conventional features for crack classification

RA and AF populated the features vector x = (RA, AF) for classi-
fication. A moving average with window span of 5 hits was then
applied on the data to reduce scatter. To train each classifier, the
data set D was divided in two subsets of training and testing. To
study the robustness of SVM to the size of training and testing data,
5–50% (with 2.5% increment) of the total number of data in D were
sampled as testing set, k. For each validation test, random re-sam-
pling carried out b = 30 times. The average of b computed error
rates was then considered as the error rate associated to each test-
ing size k.

Fig. 5 illustrates results of SVM for k = 15% as an example for one
of the 30 resamplings. The hollow and solid marks represent the
training and testing data, respectively. The linear discriminant
function also shows that the boundary varies for sensor distance.

To study the uncertainty region for classification decision
boundaries and sensitivity to the sensor distance, Fig. 6 compares
the boundaries for each sensor and mixed data. The thick lines
show the average of boundaries and the gray area represents
spread parameter (or standard deviation r). The equation of linear
discriminants for the averaged boundaries are given in the legend.
The results are highlighting the effect of propagation distance on
the AE classification. The boundary that best separates the two
populations (tensile and shear signals) is actually moving accord-
ing to the propagation distance of the AE waves to the sensors.
When classification is based on the furthest sensor (55 mm from
the crack as opposed to 15 mm) the line is translated to lower AF
and higher RA values. When the data of both sensors are treated
as a single population the line boundary is basically within the
two. Furthermore, the spread parameter is maximum for the case
where data are from S1. This means that the classification bound-
ary is less reliable using a very close sensor to location of crack. On
the other hand, the data from S2 result in a more robust classifica-
tion boundary with less spread. When the data are mixed, the
spread parameter is between the two. The promising point is that,
for each boundary, the increasing spread moves toward high RA
and AF values where the classification is less critical and easier
due to smaller population of data (see Fig. 5). This is the first effort
to quantify the influence of propagation distance on the classifica-
tion behavior and not only on the waveform parameters.

To investigate the effect of k on the error rate, Fig. 7 depicts var-
iation of error rate versus k for all the cases. When data from S2 is
deployed into analysis, the minimum error is obtained. On the
other hand, the maximum error belongs to S1 (closest sensor).
The error almost oscillates around a certain value and thus there
is no significant correlation between k and error rate. To approxi-
mate quantitative values for errors in each case, the results were
averaged and reported in Table 1 along with standard deviation
of error. The least error rate of 8.4% is obtained with the least
variation (standard deviation = 0.3) using data from S2 (furthest
sensor). The fact that generally S2 exhibits less error rates than
S1 cannot be securely evaluated at this time. It is possible that



Table 1
Average of error rates for testing data.

Sensor distance Error (%) r (%)

15 mm (S1) 22.5 1.8
55 mm (S2) 8.4 0.3
Mixed 17.0 1.0

Table 3
Error rates for S2 (%).

FEATURE Eng Dur Amp AF CF RA PF

Count 13.3 27.8 18.2 8.0 24.1 19.5 9.7
Eng 33.3 5.7 9.1 34.0 20.3 9.4
Dur 15.0 9.1 32.7 26.2 12.1
Amp 8.5 13.6 10.1 10.3
AF 9.1 8.4 6.6
CF 20.2 9.5
RA 11.2
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there is a variability related to near field effects since the emitted
wavelengths are typically longer than 10 mm and comparable to
the distance to the first sensor.
Table 4
Error rates for mixed data (%).

FEATURE Eng Dur Amp AF CF RA PF

Count 22.0 22.2 27.7 15.9 22.2 33.1 16.3
Eng 36.5 19.1 16.3 26.5 27.9 15.6
Dur 16.8 16.1 28.4 23.0 14.8
Amp 13.7 15.6 27.4 15.8
AF 15.3 17.0 14.5
CF 23.5 16.0

RA 16.8
4.2. Other feasible features for crack classification

This study goes one step further than recent literature. The
objective in classification is to find the feature spaces that mini-
mize the classification error. Although the classification error of
the order of 10% (using SVM) is considered quite successful, other
AE features provided much better performance, even for the closer
sensor.

Table 2 reports the classification error rates for various couples
of AE parameters extracted from S1. Tables 3 and 4 contain the
error rates for S2 and mixed data, respectively. The error rates less
than 10% are bolded and those less than 15% are underlined. In
each case there are some feature pairs that result in less error than
AF–RA, the highlighted cell.

In case of S1, the minimum error rate belongs to Amp (ampli-
tude)–CF (center frequency) with error of 9.2%. In this case, neither
RA nor AF perform well in conjunction with other parameters
because their combination with any other feature shows relatively
high error (e.g., see column of RA in Table 2). On the other hand,
features like amplitude and center frequency perform better in
conjunction with other features. The pairs of Amp–Eng (energy)
and Amp–Dur (duration) seem to be other appropriate candidates
for classification purpose.

In case of S2, Amplitude–energy posses the minimum error for
classification. Furthermore, it is interesting to note that features of
AF and PF (peak frequency) generally outweigh other features
because they result in minimum error in combination with all
other features (see column and row of AF or column of PF in
Table 3). The feature vector of (AF, PF) shows error in order of
6%. It is remarkable to note that the feature candidates for closer
sensor, i.e., Amp–Eng, Amp–Dur, and Amp–CF, have acceptable
performance on S2 as well (error 6 15%).

When the data from the sensors are mixed, it is hard to find
small errors (i.e., less than 15%). PF–Dur or PF–AF could be poten-
tial candidates to be used in case of mixed data. There are some
features that irrespectively of data set origin (S1, S2 or mixed),
result in almost similar and low error rates around 15% or below.
They are printed in italic format in these tables. Amp–Dur, Amp–
CF, AF–CF, and engagement of PF with many other features are
among these informative feature selection.
Table 2
Error rates for S1 (%).

FEATURE Eng Dur Amp AF CF RA PF

Count 21.9 23.1 24.5 20.8 14.4 37.8 19.3
Eng 32.0 10.8 22.3 18.6 33.1 21.1
Dur 10.7 23.5 20.9 33.0 16.5
Amp 15.3 9.2 22.2 14.8
AF 17.9 22.5 14.6
CF 18.6 17.9

RA 15.1
The fact that lowest error rates are achieved by separate sensors
(mostly the 55 mm sensor), vividly demonstrates the paramount
importance of data handling. Even the most effective algorithm
cannot produce accurate results if the data are treated without
respect to the propagation distance between the crack and the
sensor. It should be kept in mind that these changes are noticed
in small scale specimens. Despite the small scale and the anyway
limited accumulated effect of distortion, classification results are
substantially improved when treating separate AE data popula-
tions according to the distance from the crack. This is because data
collected at the same distance (sensor) from the crack have under-
gone approximately the same amount of distortion (reduction of
amplitude, frequency, duration elongation due to scattering) can-
celing out its effect. When data from several sensors are included
in the same population, the effect of distortion is differential,
meaning that some of the signals have undergone strong distortion
and some weaker which leads to higher amount of classification
error. Apart from demonstrating how heterogeneity influences
the propagating waves, it is also shown how this influence is
transferred to the final classification results of AE signals.

In the rest of this section, we study the variation of discriminant
function for four pairs of Amp–Energy, Amp–CF, Amp–Dur, and PF–
AF.
4.2.1. Amplitude–energy
Fig. 8 shows the boundaries between Amplitude and Energy for

the different populations. At certain energy zones (e.g. below 10)
the amplitude of tensile signals is higher; because in shear type
signals, the energy is distributed more along the time of signal
while in tensile signals it is mostly concentrated at the beginning
part, as discussed in the introduction. Thus, given two signals with
the same amplitude, the higher energy signal is likely shear. The
translation of the line is shown in Fig. 9. Regarding the error, it is
minimized for S2 reaching 5.5%, while for S1 and mixed data it is
10.8% and 19.1%, respectively (see Tables 3 and 4). It is worth to
note that these error percentages are much lower than the AF–
RA classification and the uncertainty region (with respect to the
data domain) is much narrower particularly for S1 (compare
Fig. 9 with Fig. 6). It means that if energy and amplitude construct



Fig. 8. Training SVM for x = (Amp–Eng) and k = 15% in (a) S1, (b) S2 and (c) mixed.

Fig. 9. Comparison of boundaries for Amp–Eng and k = 15%. Fig. 11. Comparison of boundaries for Amp–CF and k = 15%.
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the feature vector for classification, decision boundaries will be
more consistent and robust, no matter how the testing data are
sampled for cross-validation.

4.2.2. Amplitude–central frequency
Fig. 10 shows the central frequency versus amplitude. Shear

signals demonstrate lower central frequency with smaller ampli-
tude. The advantage of this pair is that both central frequency
and amplitude are threshold-independent variables (in contrast
to AF that both counts and duration are threshold-dependent).
Therefore, this engagement could be more robust for classification
purposes in noisy environment or floating threshold. To study the
variation of decision boundary with sensor distance, the SVM
Fig. 10. Training SVM for x = (Amp, Eng) and
decision boundaries are exhibited in Fig. 11. They follow the same
trend as before, i.e., the data from S2 push the boundary towards
lower values and when the data are a mixture of S1 and S2, the
decision boundary lies between S1 and S2.

4.2.3. Amplitude–duration
Another beneficial feature vector is x = (Amp, Dur). It is evident

from Fig. 12 that there is a correlation between amplitude and
duration meaning that higher amplitude signals usually have
longer duration. However, duration of tensile signals is typically
shorter than that of shear given a similar amplitude. Therefore,
SVM could be well-trained so that no matter how the feature vec-
tor is populated (from S1, S2, or mixed), the estimated error is
k = 15% in (a) S1, (b) S2 and (c) mixed.



Fig. 12. Training SVM for x = (Amp and Dur) and k = 15% in (a) S1, (b) S2 and (c) mixed.

Fig. 13. Comparison of boundaries for Amp–Dur and k = 15%.

Fig. 15. Comparison of boundaries for AF–PF and k = 15%.
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around 10–16%. Re-sampling repetition for cross-validation
resulted in the same error range. The reason is depicted in
Fig. 13; the spread parameter for decision boundaries is negligible.
Consequently, this feature pair can be potentially adopted for crack
classification with two fold advantages, (1) consistent error with
different sensor distances, (2) less uncertainty about the decision
regions. The first advantage could be due to the effect of attenua-
tion on both amplitude and duration. Less uncertainty, on the other
hand, is due to the aforementioned association of amplitude to
duration that almost scatter around a linear correlation.

4.2.4. Peak frequency–average frequency
The last feature pair to be studied is AF–PF. In the search for the

best classification in two dimensional space, this combination was
Fig. 14. Training SVM for x = (PF, AF) and k
also investigated resulting in the lowest error for the 55 mm sensor
in our laboratory study shown in Table 3. Combination of PF with
other features led to a very small error as well. The distribution
pattern is illustrated in Fig. 14. The figures present very well-sep-
arated clusters. The tensile signals possess higher peak frequency
besides higher average frequency. It is interesting to note that for
the closer sensor, there is more overlapping between clusters
(see the group of shear signals with PF around 300 kHz in
Fig. 14(a)) which clears out for the furthest sensor. As a result,
Fig. 14b shows that the cloud of shear signals are pushed to lower
values, leading to less cluster overlapping, and consequently min-
imum error rate at 55 mm. Fig. 15 depicts the variation of SVM
decision boundaries by data set and sensor distance. Similar to
= 15% in (a) S1, (b) S2 and (c) mixed.
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other feature pairs, when data set is a mixture of all sensors, the
boundary lies between the boundaries for S1 and S2. The decision
boundaries for different distances are quite highly apart; however,
the spread parameter is quite larger than other feature pairs,
meaning the boundary is more sensitive to re-sampling for cross-
validation. In other words, despite the excellent classification per-
formance for the data of S2 (only 6.6% error) the generalization
performance of this pair is not straightforward.

5. Conclusion

The present work concerns classification of AE signals depend-
ing on the corresponding fracture mode with the aim of investigat-
ing a simple scheme for structural health monitoring purposes. The
raw data come from bending and shear tests on cementitious mor-
tar specimens using two sensors at specific distances from the
crack. Support Vector Machine (SVM) is applied on pairs of AE fea-
tures and their performance on classification is interrogated.
Parameters like the population of the training and testing sets
are also tested. Results quantitatively demonstrate that the bound-
aries between tensile and shear signals are translated according to
the distance between the sensor and the cracking source. Other
classifiers (i.e. Bayesian Decision Boundary) produce non-linear
boundaries and have also been examined in the framework of this
study. Their classification results (in terms of error percentage) are
similar to SVM with linear kernel function. They are not reported
here since the algorithm explanation and presentation of results
would take much space and would make the manuscript tiresome.

Higher success rates are accomplished when the data of each
sensor are treated separately rather than mixed in a single popula-
tion. While the effect of propagation through concrete on the wave
parameters is well known mainly in the framework of ultrasonic
studies, this is one of the first approaches to quantify this effect
in the field of AE. It shows that combining powerful algorithms
and adequate treatment of the data may easily increase the
characterization at least in laboratory conditions. Furthermore,
new feature pairs are discussed that enhance the classification
performance.

Based on this study, if a cementitious material is tested with AE
monitoring, decision boundaries have to be modified for some
different sensor distances. The source of AE has to be localized first
and then classified as shear or tensile based on the closest
pre-defined boundary. It is found that several pairs of descriptors
perform quite well in terms of classification error regardless of
the data set (population of close sensor, population of further
sensor and mixed populations). The most indicative are AF–CF,
Duration–Ampl, Amp–PF and Amp–CF. The last pairs are also
threshold-independent. However, the best (lowest) error rate, is
reached by the pair AF–RA for the data of the 2nd sensor alone. Still
more experimental work needs to be conducted in order to
upgrade the work. First in terms of scale to apply in larger and real-
istic geometries closer to the dimensions of actual concrete ele-
ments. Also the material will be concrete with large aggregates
which is assumed to have even stronger scattering effect on the
waves. Additionally, a larger number of sensors should be used
in order to check the efficiency of the algorithms for several differ-
ent distances.
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